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P . RANKING AND SELECTION PROCEDURESH

’ Robert E. Bechhofer
— JDepartment of Operations Research
Cornell University .
* Jthaca, New York 14853

In roduotion
_ . 'Yin vecent years statisticians have beoome increasingly concerned with the
ff ‘ uoaningful formulation and aolution of certain multiple-deoision problems which
18 ' arise in oxper&mentotaon. Thus. for example. when an expcvimenter conducts tests
3 ~ to compare the performances of.neweral;oompeting categories of items, his ulti-
i;f . . .mate objective often is to solgotfthe'oategory (or categories) which is (are)

1 ~ ‘best, goodness being measured -in terms of a particular parameter (e.g., the

V? co population mean or the population varianco) assohiated with the random variable
being observed. To accomplish this the experimenter requires a statistical
decision prooedure which will tell him how many observations to take, how to

take thoae”obéeryationo, and based on these observations which population(s) to
_choose; the decition procedure should have the property that the probability of
an incorrect selection (or more generally, the risk or expected loss) is con-

R trolled at some specified level, :

1.

In response to the need for such.decision procedures, ressarch statlati-l
~cians have been studying various possible appropriate formulations of these
problems, and have developed a body of statistical methodology to cope with
. them. The procedures have come te be referred to as panking and selection

grooodures. The purpose of this paper is to introduce the reader to these
& procedures, to describe some of them and the phllosophy underlying their use,

and to discuss their properties,

In Section 2 we will pose thd normal means problem, and use it as a

y ' vehicle for motivating some of the basic ideas. The two most commonly adopted
formulations of ranking and selection problems, namely the so-called
indifference~zone approach and the subset approach, will be described. The
attributes of single-stage, two-stage, and sequential procedures devised for

the normal means problem, under different assumptions ooncerning the population
variances, will be assessed. In Section 3 we sketch some analogous results for
the' normal variances problem, and in Section 4 we mention results for parameters
of other distributions.
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fhe number of reséarch papers written on subjects in this field is now
vast; it,is hoped that this brief introduction will stimulate the readsr to
explore the literature, and to spply the procedurds where appropriate. ¥

2, The normal meggs;problem A
A very important problem: which arises frequently in applications is that
- of selecting the normal pdpulation which has the largest population mean. Thus,
. for example. tha ordnance engineer might be conducting firing proprams to com= _ﬂ
pare the ballistic performance of different types of projectiles (in which case Co
.  his objective might.be to select that»type“whlch, on the average, travels the L
greatest distance), or the medical reseéarch worker might be studying the response . 3
of patients to different kinds of analgesic drugs (in which case his interest
might 1lie in selecting that drug which producks, on the average, the longest ','
period of time without pain), or the agronomist m*ght be conductlng fileld trials .
with different varicties of grain (in which case his purpose might be to selept
that variety which prodhces on the. average, the largest yleld per acre). In all
of these cases large values of the means are desmed to be desirable; however. in
other cases small. values of the means might be considered deqirable. The proce-
dures that we will describe can, with minog modifications, handle these latter

cases as wall, o . B ' . |

’

In Sections 2.1 and 2.5.1 we shall state the statistical assumptions .\
which underiie the procedures that have been developed. Then we shall describe
aeveral approaches to the selection ‘problem.

N i

2.1 Statiatical assumptions -

We shall assume that we have k sources I, (l<igk) ~f normally
dtstributed data, the ith source having population mean vy and population
’variance of; population IIi (1gisk) should be thought of as being assoclated
with the ith, categbry. The M; are assumed’ to be unknown. Let "[1] S¥oy %
ver % ”[k] denote the ranked values ‘of the His it is assumed that the palring
of the I, with the ;[j] (1g3,33k) .is completely unknown. Tossible assump-
tions concerning the oy Tl_jnk) .will be discussed in Section 2.3.1. Throughout
this puper xij (1gigk, 3= 1 2,...) will denote the Jxh obsorvation‘from "i’

all observations being assumed independent. .

L) : t
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2.2 Some formulationg

The two most commonly used formulations of’fhe selection problam are
due to Bechhofer [1954] and Gupta [1956], [1965]; these are referred to as the
indifforence-zone approach and the subset approach, respectively, The approaches

are descrided dbelow.

:52.2.1 kTﬁe‘indifference-zone'agproach

The goal and probability requireﬁent assoclated with the

- indifference-zone approach are:

_Goal: "To select the population associated with "[k]'"' S (2.1),

It is assumed that prior to the start of experimentation the experimenter can o
" specify two constants {8%,P%} (0<§%*<w,1/k<P%<1} which are then incorporated
into the Ffollowing probability requirement:

Probabilitigrequirement:

Frob{Selecting the population associated with "[kJ} > P
‘ (2.2)

The experimenter then restricts consideration tolproceduﬁes which guarantee (2.2).
(In (2.2) the specified quantity &% can be thou@ht of as the smallest differaence
"worth de@ecting" between the population mean of the "best" and "second best"
population; P% is specified strictly greater than 1/k sincela probability of
1/k ocan be achieved by choosing one of the k populations at random.)

2.2.2 'The subset approach

The goal and probability requirement assoclated with the subset
approach are:

Goal: '"To sclect a (non-empty) subset of the populatiots (2.3)
~ which contains the population associated with "fk]'"

It is assumed thot prior to the start of oxperimeéntation the experimenter can
specify a constant (P%*} (L/k<P®<l) which is then incorporated into the follow-
ing probability requirement:
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'‘Probability requirement: . ,ﬁ

Prob{Selected subset contains the populatién associated with “[k]} > P®
regardless of the values of the Mg (1gizgk). (2.4)

A R S S

The experimenter then restricts considération to pronedureé which guarantee (2.u4).

P
N1
,¢

sy

- Remark l: It 1ls to be noted that the experimenter plans his éxperiment'assuming g i

f" v ~ that the population means are nét all equal; this is a very reasonable assumption v
% | in almost all real-life éitﬁations. He is interested in identifying the "best" E
55 e : populatiqn‘-- in this case the pdpulafion with the largest pppﬁiation ﬁegn. Goal I
; (2.1) leads to a k-decision problem since the experimenter must choose one of the B
K populations based on the outcome of his.experiheht (i.e., his possible deci- '
sions are: I, is best, or 1,

is best, o *+*+, or nk is best). Similabiy, .
goal (2.3) leads to a (2k#l)-declsion problem Since the experimenter must choose

T

one of the 2k-l non-empty subsets of the k populations based on the outcoine

— - b

of his experiment (e.g., for k=3 his possible decisions are: only T, is in

the subset; only n2 is in the subset, only na is in the subset, ni

are in the subset, nl and II3 are in the subset, 'n2 and "3 are in the

and n2

iz 4'@;..,~

.

subset, Hl and H2 and IIa are in the subset). These multi-decision approaches Fo
are in marked contrast to the classical 2-decision test~of-homopeneity approach

el sl o
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afforded by the Analysis of Variance; in that.approach the experimenter tests the :

(usually completely unrealistiz) hypothesis that.the .k population means are

S

equal, and decides based on the outcome of the experiment either to accept the
hypothesis or to reject the hypothesis.

Remark 2: As noted above, goal (2.1) leads to a k-decision problem. However,

&

depending on the practical situation under consideration, the experimenter can,
using the indifference~zone approach, pose more general goals, For example, he

may wish to select the t (15t<k-1) best populations with regard to order, or
he may wish to select the t (1stsk-1) best populations without regard to order,
t being fixed before the start of experimentation. (Both goals reduce to (2.1)

i *

when t=1.) These more general goals lead to a [k!/(k-t)!]-decision problem
and a [k!/t!(k-t)!]-decision problem,, respectively. Such gencral goals and
others are discussed in Bechhofer [1954] and Mahamunulu [1867].

. ' 932
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'Remark 3: For goal (2.1) and the indifference-zone approach, tha experimenter

always ends up by selecting a single population. For goal (2.8) and the subset
approach, the experimenter ends up by sclecting 1‘_93. 2 or +« or k
populations, depending or the outcome of the experiment; thus for this latter
epproach the number of populations in the selected subsct is a random variable.

2;2.3 Other appboaches

S : ~ Santner [1975] has.proposed a restricted subset approach in which

the experimenter selects 1 353 2 or °° gg. ¢ populations, depending on
o, ‘the outcome of the experiment, where ¢ (lgcsk) is decided on and fixed before
the start of experimentation; his approach can be regardéd as bridging the

,"" 7 indifference-zone and subset approaches since if ¢=1 his approach reduces to

p : the indifference-zone approdch while {f c=k it peduces to the subset approach.
; Other approaches in which more general "loss functions" are used have been pro-
posed by Somenville [1954) and Fairweather [1968]. An approach in which the Wy
are assumed to have prior distributions has becn considered by Dunnett [1960]
while a similar idea from a Bayesian point of view has'been proposed by Raiffa
and Schlaiffer [1961] and Deely and Gupta [1968]. However, for brevity we will
& not discuss these or other approaches.

2.3 Assumptions concerning the variances

-

2,.3,1 Possible assumptions

In order to devise procedures which will guavantce (2.,2) or

f}l (2.4) for the normal means problem, it is necessary to make an assumption con-
o cerning the values of the oi (1gigk). Which assumption it is appropriate for
. the experimenter to make in any particular practical situation depeuds on the
';{ information available to him at the time that he plans his experiment. The four
o] .
'“; most common assumptions are that:
Al a) The values of the oi (1gigk) are known, amd all arc
3; equal to o2 (say). (2.5a)
a b) The values of the oi (1<i<k) are known, but not all
if are cqual. (?.5b)
gﬁ - . ¢) The values of the og (1515}) are unknown, but it is .
%ﬁ known that they have a common value 02 (say). (2.5¢)
-?f e d) The values of the oi (1¢i<k) are completely unknown. (2.54)
A : :
&
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2,.3.2 The variance assumption and associated procedures

Once the experimenter has adopted ene of these assumptions he than
must choose a selection prﬁcedure which was derived under that particular assump-
tion. ' )

Thus, for example, if he wishes to guarantee (2.2) and adopts
assumption (2.5a) or (2.5b), then he can use a single-stage procedure (Bechhofer
f1954]), a two-stage prosedure ,(Alam [1970] or (Tamhane [1975]), an open séquen-
tial procedure without elimination (Bechhofer, Kiefer, Sobel [1968]), or a closed
sequential procedure wi#h elimination (Paulson [1964]). If he wishes to guarantee

(2.2) and adopts assumption (2.5c), then he cannot use a single-stage procedure
(see Dudewicz [1971]) although he can use a two-stage procedure (Bechhofer,
Dunnett, Sobel [1954]) or a sequential procedure (Paulson [1964]); similarly,

if he wishes to guarantee (2.2) and adopts assumption (2.5d), then he cannot use
a single-stapge procedure althoﬁgh he can use a two-stage procedure (Dudewicz and
Dalal [1971] or Rinott [1974]). Finally, if the experimenter wishes to guarantee
(2.4), and he adopts assumption (2.5a) or (2.5c), then he can use a single-stage
procedure (Gupta [19561, [19651). ' -

When the experimenter has adopted a particular assumption and as a
consequence has the option of choosing among several competing procedures, each
one of which will guarantee his probability requivement, he then chooses one of
these procedures on the basis of various possib;e operational or cost criteria.
An indicatiocn of such criteria will be given in our later discussion., 1In the
next section we shall describe certain selection procedures. Our emphasis will
be on procedures which can be used with the indifference-zone approach to

guarantee (2,2),

2.4 Procedures for use with the indifference-zone approach unéer the

assumption of common known variance

In this section we shall describe three procedures, each one of which
will guarantee (2.2) when assumption (2.5a) is made; minor modifications of these
procedures will guarantee (2.2) when assumption (2.5b) is made. The procedures
will be introduced in the order of their historical development, each being
designed to afford different options to the experimenter.

934




2,4,1 Single-stage procedure
The easiest type of proce&une to implement is a single-stage one.
The £ollowing single-stage procedure was proposed by Bechhofgr [1954]; constants

S pw (see a), below) necessary to implement this procedure are given in Table I.
- Tk, . AR ) -

"a) Take & common number N of observations from each of the k
populations where N. is the smalleqt iuteger greater than or
equal to (ck P*o/G*)Q ‘ .

b) Calculate x f xij/N (lgigk), and let x[ 7 <§t2]<ﬁ"<§tk3

dencte the ranked values of the Xi (2.6)

. ¢) Select the population which yielded ?tk] as the one associated
Wi‘th u[k]l " .

Note: The constapts C,ph  are computed under the assumption that the
(1gigk) are in the So-called least-favorable (LF) - configuration, i.e.,

;-.sy_-:‘,
e

,Aga
ey

L
LR
a3 © Yrk-11 © Mka
Table_]_:_
Values of °k P
k *
P
' 2 3 y 5 Y] 10
0.99 3.2900 3.6173 3.7970 3.9196 4,0861 Y4,2u56
0,95 2,3262 2.7101 2,9162 3,0552 3.2417 3.4182
0.90 1,8124 2.2302 2,4516 2.5997 2,7972 2.9829
0.80 1,1902 1.6524 1.8832 2.0528 2.2639° | 2.4608
0.60 0.3583 0.8852 1,1532 1.3287 1.5583 1.7700

e amer et - s

The valugs iﬁ this table are abstracted from Table I of Bechhofer
[1954] where values for other k and P¥ are also given. Addi-
tional values for k = n¢l = 2(1)51 and P* = 0.98, 0,975, 0,95,
0.90, 0.75 are contained in Table I of Gupta [1963); Gupta's values
must be multiplied by vZ in order to obtain the
required i{n (2.6). '

ck.P* - values

Lfile el e Rl I wbiage Al e
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2.4,2 Open-ended sequeniial procedure without elimination

The single-stage procedure of Section 2.4.1 is conservative in the

sense that the constants Ci,pt necessary to impfément it arc computed under

the azsumption that the population means are in the LP-configuration; however,

it has been shown (Hall [1959]) that the probability requirement (2.2) cannot

be guaranteed with a smaller N' if the experimenter restricts consideration

to single-stage procedures. If this restriction is eliminated, and.multistage
procedures are permitted, then certain gains can be achieved. What is desired

is a multi—stage procedure which not only will guarantee the probability require-

. ment (2 2) when the population means are in the LF-configuration, but also will

require a smaller number of observations per population, on the average, than

the N of (2.6) when the population means are in very favorable configufations-—
in particular when (u[kJ - “[k-lj)/° is large. The followiny sequential
procedure, which possesses these attributes, was.proposed by Bechhofer, Kiefer,
and Sobel [1968], pp. 258-9, 264-7, .

"a) Take one observation from each of the k populations at
each stage of experimentation. Let 2 Xyy denote the
cumulative sum from 1, (l<i_k) at the mth stage of '

experimentation, and let Z X134 ¢ jzl Rppyy €vo< Z Xrk1

denote the ranked, values of the Z xij‘

371 -
b) At the mth stage of experimentation (m=1,2,...) compute (2.7)

m
k-1 L Xrys - Z X193
2 = ] axp JEn iz3 .
m 1‘1 [+ [+]

Then proceed as fcllows:
i) 1If Zm,§ (1-p¥)/p%, stop eyperimentation and solect the

population which ylelded Z x[k]j as the one associated
with MEk)* :

AR PRI TS ST -
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11) 1f zm > (1~P*)/P%, take another observation from each of
the k populations and compute zm+1.

Continue in this manner until the rule talls for stopping."

Remark 4: For (2.7) the observations are taken in vectors, each vector consti-

tuting a stage, there being one observation from each population in every vector.
The number of.stages (i.e., number of observations per population) necessary to
terminate experimentation is a random variable., The expected number of stages to
terminate experimentation has been shown (B-K-S [1968], Tables 12.8,2 and 12.8.3)

. to ba less than N for many configurations of the My (1gigk)s in particular,

if ("[k] - "[k—l])/° is large, then with high probability experimentation will
cease after only a small number of stages. Regardless of the configuration of

the My (1gigk) experimentation will cease with probabilit& one after a finite
number of stages,

2,4,3 Closed sequential procedure with elimination
The sequential procedure of Section 2.4.2 has two possible drawbacks:
i) It is openended, i.e., before the start of experimentation it is not possible

to give a finite upper bcund on the number of stages to terminate experimentation,
and {i) It does not eliminate "non-contending' populations, i.e., it continues to
sample from populations which, based on observations obtained in the early stages
of experimentation, would appear to be out of contention for being selected as
"best." The following sequential procedure, which overcomes these drawbacks

of (2.7), was proposed by Paulson [196u4]; like (2.7) it guarantees the probability
requirement (2,2) when the population means are in the LF-confiéuratien. and

algo tends to cease experimentation early when the population means are in very
favorable configurations:

For fixed A (0<Ag8%/2) let a, = [07/(&%-1)]10gl(k-1)/(1-P¥)], and
let wk = the largest integer less than aA/k. Paulson's procedure is actually
a family of procedures which depend on the cholce of A; in Remark 9, below,

" we ghall make some comments on the role of A,

"Tuke once observation from eachwof the k populations at the
firet stage of experimentation. Eliminate from further considera-

tion any population ni for which a, - A < max X, - X 1f

A. 1<85k sl

i1’
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* all but one population is eliminated after the first stage, stop
experimentation and select the remaining population as the one
associated @ith"u[kj. Otherwise, go on tg the_second stage. and take
one obgervation from each population not yet eliminated. At stage

m (2§m§yA) take one observation from each population not eliminated

after the (m-1l)st stage, and then eliminate from further considera-

tion any remaining population ni for which (
| : . 2.8)
- F a3 o
) ‘a, - mA < max{ X 41 - X '
) A s §=1 sj y=1 ij

where the sums are only for populations left after the (m-1)st

stage. If all but one population is eliminated after. the mth

stage, stop experimentation and select the remaining population ' '
as the one associated with “[k]; otherwise go on to the (mtl)st

stage. If more than one population remains after stage WA’
terminate experimentation at the (Hx+l)st stage by selecting
the remaining population with the largest sum of the (W,+1)
observations as the one associated with "tk]'"

Remark 5: The procedure (2.8) never requires more than wk+1 stages to terminate

experimentation.

! Remark 6: The procedure (2.8) Eermanentli eliminates apparently non-contending
il populations; thus the number of observations taken at the mth stage of experi-
mentation is less than or equal to the number of observations taken at the

(m-1)st stage of experimentation.

Remark 7: The cost of experimentation using procedures (2.7) and (2.8) can be
measured in terms of expected number of stages to terminate experimentation
and/or expected total number of observations to terminate experimentation.

Which onc is an appropriate measure will depend cn the practical situation at
hand.

) -'. 4 . -_
2

Remark 8: Ramberg [1966] has demonstrated using Monte Carlc sampling methods
that

LT
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max E{Number of stages to torminate experimentation)
ulo"2o°°-|"k -

kY 1}

and . - ¢

max E{Total number of observations to terminate experimentation}
Hyobgs e oby

are less for (2.8) than for (2.7) when P#* is high (L.e., close to unity) but
the inequality is reversed if P* is sufficiently small; Perng [1969) has
studied that quostion analytically. This result is of practical interest

since it compares the performance of (2.7) and (2. 8) when M1y ® "[k]' i.e.,
when, unknown to the experimenter. all of the population means are equal and
thus the expected number of stages and the expected total number of observations
are at their maxima.

Remark 9: Fabian [1974] pointed out the advantage of choosing ‘A = é%/2, and
recommended for that choice of A that 1-P* in a, be replaced by 2(1—?*)
yielding 86*/2 = [20 /6*]10;[(k 1)/2(1-P%)] = b (say). then b replaces

a, and &%/2 replaces A in (2.8)., This modified procedure still guarantees
the probability requirement (2.2) when the population means are in the
LF-configurat;on: It wniformly (in the ;) reduces the expected number of
stages and expected total number of observations relative to the ones that
would have been obtained with the unmodified pfoceéu%e employing A = &%/2;

" in Addition, in either the family of unmodified Paulson procedures or in the

family of modified Paulson procedures the choice A= §%/2 has the property that
max E{Total number of observations to terminate experimentation} is

'“1'“2""'“k

approximately minimized for P* close to unity.

2.,4.4 Two-stage procedure

The sequential procedures (2.7) and (2.8) have the drawbacks that
they may not be appropriate for use in certain types of experimentation. For
example, in agricultural experimentation where ylelds can be obtained only
once per year (or per growing seagon), and thus only one vector of observations
can be obtained per time period, multi-stage experimentation is impr§ctical.

939
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' posaosaing a minimax property similar to that achieved by Fabian's modification

- .assumption of common unknown or compJetely unknown variances

In such situations two-stage experimentation would appear to be appropriate,

Alam [1970] and Tamhane [1975] have developed two-stage proceduves which guarantee
the probability requivement '(2.2) when the population means are in the LF-
configuration; their procedures screen out the apparently non-contending popu-
lations in the first stage, and concentrate sampiing on the remaining populations
in the second (terminal) stage. Tamhane' 's procedure has the added virtue of

of (2.8) when, ) = &%/,

2.5 Proceduves for use with the’ indifference-zone approach under the

As was mentioned in Section 2.3.2, if the experimenter wishes to o
guarantee'(2.2) and adopts. assumption (2.5¢) or (2.5d) then he cannot use a ‘Q
single-stage procedure. In this section we shall consider two-stage procedures
which accoinplish these objectives.,

2,5.1 Two-stage procedure for the common unknown variance case

The following two-stage pfocedufe for the common unknown variance
case was proposed by Bechhofer, Dunnett, and Sobel [1954]; constants hk,P*,n
(see c), below) necessary to implement this procedure for P#* = 0,95 are
given in Table II.

"a) In the first stage take an arbitrary common number- No > 1
of observations from each of the k populations.
b) Calculate X Xo (X, §° X, 4/N )2/n which is an
PP I =
unbiased estimate of 0° based on n = k(No-l) degrees of
freedom.

c) Inter the appropriate table (e.g., Table II, below, for
P¥ = 0,95) with n =.k(No—l) and the specified P%, and
obtain a constant hk,P*.n'= h (say)f

d) In the sacond stage, take a common number N-N, of additional

observations from each of the k populations where

ETR




! N = Ny 1f 2(ns/sm? < Ny {
¥ N = tb(hS/G*)zl if 2’-(hs/6!?)2 > Ngs %
o (2.9) J
ol and ([y) denotes the smallest integer equal to or grcater than y.

N I 3
-+ B e) Calculate the k over-all (first- stage plus second stage) .sample L
4 B b
1 - sums Z x (1...1-#); and let Z X z Xrayy €or© ;
i B y51 T [l]j ng {215 1
5;' . I X[k“ denote the‘rank.ed. values of the )_: xij.

£) Select the populatlon which yielded ), x[k] j as the one

. . " ¢

: ) assogiated with Mrk)*

‘Note: The constants hy pa.n are computed under the assumption that the {

. B T 1) [

;| (1gigk) are in the LF-configuration.
4 Table 11

i % = .

Values of hk.P*.n for P 0.85

k
b n
2 3 n 5 7 10
1 5 | 2,02 | 244 | 2.68 | 2.85 | 3.08 | 3.30

| 6 | r.ou | 2,98 | 2.6 | 2.7 | 2.92 | 3.12
¥ 7 | 189 | 2.27 | 2.48 | 2.62 | 2.82 | 3.01
' { 8 1.86 2,22 2.42 2,55 2.74 2,92
;";’{4 9 | 1.83 | 2,18 | 2.37 | 2.50 | 2.68 | 2.86

?4 10 | 281 | 215 | 2,94 | 2.47 | 2.64 | 2.8

:ifl' 15 | 175 | 2,07 | 2.4 | 2,38 | 2.50 |- 2.67 . B
‘-A;.t 20 .72 2.03 | 2.19 2,30 1 2.46 2.60 .
ﬁﬁ - 30 1.70 1.99 2.15 | 2.25 2.40 2.54 , j
‘3131 - 60 | 1.67 | 1.95 | 2.10 | 2.20 | 2.35 | 2.um !
A : o ‘164 | 2,92 | 2,06 | 2.16 | 2.29 | 2.42
Ry
il |
) ¥
f | - .




L Tﬁé values in this table'qre abstracted from Table la of
Dunnett [1955]; Table lb of Dunnett [1955] gives corre-
sbondini values for P*.= 0.99; Dynnett's p equals
our k-1, ’

Note: -The value of hk P#,n given for the n = » row of Dunnett [1955], Table la,
is: the aame as the value given by Gupta [1963], Table I, for the same k-l = p =n .

. and- Pht'= O 95 ~1-a. : - L - : S e

Remark 10: The total number of obqervations N required by the two-stage procedure '
is a réﬁdom variable since its value depends on the value of 82; no additional

" obsarvations are taken 'in the second stage if 32-'15 sufficiently small.

Remark 11: Paulson [1964], Section 5, proposed an open-ended sequential procedure

- which permanently eliminates non-contending populations; his procedure is appli-

cable in situations in which the common variance is unknown.

2,5.2 Two-stage procedures for the comﬁlately unknown variance case
bDudewicz and Dalal [1971], and also Rinottv [1874], proposed two-
stage procedures fbr the'completely unknoﬁn variance case. Like (2.9), the
common number of observations in the first stage for each of these procedures
is arbitrary (51), while the total number of observations per population is
a randon variable. )

2.6 Procedure for use with the subset approach under the assumption of
common (known or unknown) variance
As was mentioned in Section 2.3.2, if the experimenter wishes to
guarantee (2.4) and adopts assumption 2.5a) or 2.5¢), then he can use a gingle.

" stage procedure, The following single-stage procedure was proposed by Gupta

[1956]), [1865] for use under assumption 2.5¢c); constants dk Ph.n (see c), below)
] ’

necessary to implement this procedure are given in Table III. (Under assumption

2.5a, the random variable S in d) of (2.10) is replaced by o. and the value

of dk PR .0 for neze if used.)

gh2



' }"a) Tako a common avbitrary number N> 1 of observations from
each of the X populations. B

b) Calculate x1 Z x /N (1gi2k) and 1¢t x[l] i&?] <. .< Ytk]

denote the ranked values of the xi also-caleulate

2 z (xij Z X /N) /n which is an unbiased estimate
1-1 jed j=1

. ;of c2 based on n & k(N-1) degrees of freedom. ' | o (2.10)

¢) Enter the appropriato table (e.g., Table III, bolow. for
P* & 0,95) with n = k(N-1) and the specified P#, and.
obtain a constant dk ph,n F 4 (say)

'd) Retain the population ni (l_ﬁ_k) in the selected subset if

and only if X, [k] - ds/AN." o co . .
Table ITI
: . _
Values of dk.P*,n for Pw% = 0.95
k
n .
2 5 10 '
15 2,48 |, 3.34 3.78

20 2.44 3.25 3.67
30 - 2.40 - 3.19 3.59
60 2.36 3.12 3.50

The valucs in this table are abstracted from Table I of Gupta
and Sobel [1857] which gives many additional d-values for
P* = 0,75, 0,90, 0.95, 0.975, 0,99,

Nota: dk.P*.n e V7 My pi,n Wheve by op o is given {n.Table 1II.

Romark 12: The width of the “"yardstick" in d) of (2.10) is dS//N which docreases
with N; thus the larger the value of N, the smaller the expected number of
populations that will be included in the selccted subset. Also, for #ixed N
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the more favorabls the configuration of the population means (e.g., the larger

“the value of (u[k] M k- lJ)/o). the smaller the expected number of populations

that will be included in the selacted subset. (This expected number always lies
between unity and kP#,) '

Remark 13: .In'oractice the szubset approach is often.used for-soreenihg purposes,

since. it tends to eiiminate»"noﬁ?éontdnding" populations (i.e., those with small

u-values) from the selected gibset. The populations retained in the subset can
‘then be subjected to further study in an independent follow-up experiment in

which thefindigfq;onoeezone_qpp:ogoh_(say) ia_usod, o

2.7 Factorial experiments involving means
The statistical model given in Section 2.1 is appropriate for single~- '
factor experiments. In a two-factor experiment we have rc normal populations °
14 (1gisr, 18350e) - with population means uij ‘and population vavianoea oij

It is sometimes appropriate to assume that Mgq = K +og ¥ Bj ( Z ay = Z B = 0),
S _ i=}

i.e., that there is no interaction between the factors, and that ci = 02

(1gigr, 1gige). Here the @y and the Bj are referred to as the "effects" of

the first and second factor, respectively. It is assumed that y, - the Y

the Bj. and 02 are unknown., Let “[l] [23 Sl a[ ] and

5[13 < 5[23 5“":'B[oj denote the ranked values of the ay and the éj; it
is assumed that the pairing of the niﬁ with the ap,, and B[jJ (1cier, 1gige)
is completely unknown. '

In the above setup it is possible to consider goals such as

Goal: '"To select the 'level' of the first factor assoclated _
with rpg® and simultaneously to select the 'lavel! (2.11)
of the seocond factnr associated with B[o]’"

with associated probability requirements. Such problems are treated for the
indifference-zone approach in Section 4 of Bechhofer [19547. The virtue of

conducting factorial experiments in this situation is discussed by Bawa [1972].
The indifferencu-zone selection p 'ocedures of Sections 2.4 and 2.5 can be used
in multi-factor oxperiment; it is only necessary to make appropriate modifica-
tions in the procedures.
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; It is also possible to conduct single-factor or multi-factor ranking
and selection experiments using the standard éxperimental designs such as ran-
domized blocks and La;in squares, and these designs play the same type of role
here as they do in classical hypothesis-testing situations.

2.8 Means vs. a fixed known standard
In Seoction 2.4,1-2.4.4 and 2.5.1-2.5.2 the selection procedures
proposed were devised to select the category associated with the largest -

u-value. However, in certain classes of experiments even the "best" one of
tho.competlng categories, i.e., the category with the largest u-value, may not
 be good enough tS warrant the experimenter's selecting it. For example, if the
competing categories are drugs, the best one may not be worthy of consideration
unless the expected period of immunity obtained w;fh that drug is at least some
specifled period of time; or if the competing categories are types of heat
" treatment of steel, the bast one may not be deemed autisfuctoﬁy unless the
expacted tensile strength resulting from that type of treatment is'nt least
some specified minimum value, Such fypes of nroblems involving comparisons
of means with a fixed known_ standard are considered by Bechhofer and Turnbull

[2974], [1975a); in the first paper a single-stage procedure s proposed under
assumption (2,5a), and in the second a two-stage procedure is proposed under

- assumption (2.5c). These procedures are generalizations of Bechhofer [1954])
and Bechhofer, Dunnett, and Sobel [195M]: Gupta and Sobel [19§8] proposed a
single-stage procedure for this problem using the subset approach.

3. The normal variances problem

Section 2 dealt with the normal means probleﬁ. Corrasponding procedures
exist for the normal variances problem, Ranking and selection prohlems involving
variances arise, for example, when the ordnance engineer is interested in
selecting that type of projectile which yields the smallest dispersion of
range, or when the laboratory technician is interested in selecting that
measuring instrument which has the highest precision (e.g., that scale which
has the preatest reproducibility). An analogue of the single-stage procedure

given in Bachhofer [1954] for normal means is given in Bechhofer and Sobel
[1954] for normal variances; factorial experiments involving variances are
.treated in Bechhofer [1968a)] and [1968b] using a model proposed in Bechhofer [1960].
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" Pechtiofer and Turnbull [1975b] s the counterpart for variances of Bechhofer and
Turnbull [1874]. An analogue of the procedure given in Gupta [1956] for normal
means is given in Gupta and Sobel [1962] for hormar'vapiances.

4. The Bernoulli p problem, and other‘problems

! ' . Ranking and selection problems involving Bernoulli p's (i.e., probabilities

of "guccess" on a single trial) arise, for example, when a consumer is interested:

. in selectihg that producer whose product: has the smallest Iraciion defective. S

‘ . _An analogue of the procedure glven in. Bechhofer (1954] for normal means is

' given in Huyett and Sobel [1957] for Bernoulli p's. while the counterpart of the DT

procedure given in Gupta [1956] for normal: means is given in Gupta and Sobel I
[1960] for Bernoulli p's. ' S

* Sobel [1954] proposed a seqpential pbocedure for selecting the pronentjal g '.ﬁ

_.populatlon with the largest mean; his results have applicability in reliability L
studies. Bechhofer, Kiefer, and Sobel [1968], p. 63 considered sequential
procedures for ranking paramgteré of .certain stochastic processes such as ﬁhe
Poisson procesa and the Wiener process. Various research workers have proposed
procedures for many other ranking and selection problems involving parameters
of distributions arising in practice.

) 8. Closing}vémarks .

; The ranking and selection formulation of statistical precblems invelving

f fnferences concerning k 2 2 ' categories has wide applicability in the solution
i of problems arising in expevimentati;n. In this paper we have sketched only

& small number of the relevant ideas and procedures. The interested reader
.is referred to Bechhofer, Kiefer, and Sobel [1968] for references up to that

date, and to Gupta and Panchapakesan [1972] for references to the latter date
concerning the subset approach, Additlional and more recent.refovences are given
by Watherill &nd Ofosu [1974]. The writer would appreciate learning of experi-
montal situations in which some of the procedures described herein have proved

helpful.
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